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Abstract

A definition of essential independence is proposed for sequences of polytomous items.
For items satisfying the reasonable assumption that the expected amount of credit awarded
increases with examinee ability, we develop a theory of essential unidimensionality which
closely parallels that of Stout. Essentially unidimensional item sequences can be shown
to have a unique (up to change-of-scale) dominant underlying trait, which can be consis-
tently estimated by a monotone transformation of the sum of the item scores. In more
general polytomous-response latent trait models (with or without ordered responses), an
M-estimator based upon maximum likelihood may be shown to be consistent for § under
essentially unidimensional violations of local independence and a variety of monotonic-
ity /identifiability conditions. A rigorous proof of this fact is given, and the standard error
of the estimator is explored. These results suggest that ability estimation methods that
rely on the summation form of the log-likelihood under local independence should generally
be robust under essential independence, but standard errors may vary greatly from what
is usually expected, depending on the degree of departure from local independence. Ar

index of ¢ :parture from local independence is also proposed.

KEY WORDS: item response theory (IRT), polytomous item responses, essential inde-
pendence, unidimensionality, latent trait identifiability, likelihood-based trait estimation,

asymptotic standard errors, structural robustrness, local dependence.



1. Introduction

In the usual binary or dichotomous response formulation of item response theory
(IRT), the correctness of the j** item in a test or item sequence is indicated by a (random)
response variable X, taking on the value 1 for correct responses and the value 0 for incor-
rect responses. This codes the examinee’s response with the score we wish to assign to that
response. In considering polytomous data, it is convenient to treat the coding and scoring
operations separately. For the j** polytomous item we will code n possible response cate-
gories with the arbitrary labels z;0,2;y,...,2,(n-1), and indicate the examinee’s response

with the (random) response variable
.X, € {Ijo,.‘tjl,... va(n—l)}-

For convenience in scoring the item, it is also useful to have a set of binary response

variables

1 if X, =2,m,
Y. = { J J
m 0 else.

Note that for each j,Y,o + Y;; +... + Yj(,_;y = 1, and that any item scoring method 4,

that assigns the nuraerical score a,,, to the category z,,, may be expressed in terms of the

Y's as
ne—}
Aj= 2 amYym.
m=0
Finally, let X5 = (X1,X2,....X,) be the vector of item responses on a test of length J
given by a randomly-chosen examinee, and let z; = (z;,7;,.. .x) denote any particular

instance of X ;.

The general form of an IRT model for X may then be expressed as

P[&:gji:/P[z}’J=351|C;>=§}f(2)d§_- (1)



We follow Thissen and Steinberg (1986) in considering © = (01.... ,©y4), the latent trait
or trait vector, to be a random variable (vector); thus, f(g) is this variable’s probability
density function for the population in question. The traditional IRT assumption of local

independence reads, for polytomous item response models,

]

J
PlXs=z,10=8]=1] II Pm®*~, (L1)
j=1

-1
m=0
where the y;m» are observed values of Y, corresponding to each z;, and P;m(8) = P[X; =
.r,-mlg = f] are the response characteristic functions or, when d = 1, respo:ise characteristic
curves (RCC’s). There is no natural monotonicity assumption for general polytomous

models, although for those cases in which the responses are ordered from least correct to

most correct as m increases, it seems reasonable to require that

n—1}
P;.(6) = D_ P,i(6) is nondecreasing in § for all j,m, (M)

k=m

that is, nondecreasing in each coordinate of 2 with the other coordinates held fixed (these
cumulative response functions are considered by, for example, Samejima, 1972). Note
that P/, (6) = Plresponse m or greater ig} is the binary item response function one would
obtain by dichotomizing the item so that response m or greater is scored as 1 (correct) and
any lower response is scored as £ (incorrect). When L] and M both bold for a d-dimensional
trait Q we will write d; for d. We will be concerned mostly with d; = 1 models in what
foliows.

This paper has two aims. First, we wish to present and explore a definition of essential
independence (EI) for polytomous item response sequences. EI, proposed for binary item
sequences by Stout (1987; 1990), is a weakening of LI that is useful when—as seems often

to be the case in real-life tests—there ic a dominant underlying latent trait for the items but
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the presence of various minor traits prevents L] from holding exactly. For items satisfyving
a condition like M above, the theory of essential unidimensionality and estimation of the
dominant unidimensional latent trait based on raw test score proceeds much as in Stout

(1990). This is the subject of Sections 2 and 3.

Our second aim is to explore maximum likelihood estimates calculated under the
assumption that LI holds when in fact only EI holds. Section 4 contains the basic result:
the MLE calculated under LI remains consist.at for § under EI, subject only to regularity
conditions and a natural identifiability condition. Thus, maximum likelihood estimation

is robust against this realistic violation of local independence.

Monotone unidimensional local independence models will, and should, continue to be
used as basic psychometric tools since they are attractive to the intuition and lead to
explicit, analytically straightforward 'ikelihoods. However, it is widely accepted that they
oversimplify the latent structure of most tests in the real world. In some situations, the
way the latent structure violates this simple model may be estimated and exploited, but
In many situations it may be impossible or overly expensive to collect the data needed to
ferret out a multidimensional latent structure. The discussion of this issue by Drasgow
and Parsons (1983) is especially relevant here. Essential independence is a way of char-
acterizing unidimensional stability without knowing the true likelihood function (Jatent
structure). The importance of the robustness result of Section 4 is that it suggests that
ability estimation methods based on the simple LI model continue to work in situations

in which the litent factors causing strict LI to be violated are sufficiently minor that EI

holds.

Despite this robustness in consistency, there is little robustness in variability. In

4
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Section 5 we consider the standard error of the estimator of Section 4, showing that if
the departure from local independence is great enough, the estimator can fail to have the
usual standard error based on the information function, can fail to converge at the usual
J~1/2 rate, and can even fail to be asymptotically normally distributed. An index of the
degree of departure from LI is proposed in Section 5 that can be used to calculate the
new standard error. LI-based estimators like the MLE can be expected to be close to
the examinee’'s § under realistic conditions if the test is long, but conventional methods
of assessing the standard errors of the estimates may be misleadingly optimistic in these

same realistic settings.

Gibbons, Bock, and Hedeker (1989) have developed a method of factor analyzing
dichotomous data with correlaced specific factors that may be useful to obtain correct
standard error estimates i1 at Jeast some IRT settings. An indication of how their method
might be used in the present context will be given in Section 5. Wainer and Wright (1980)
have also reported some success using jackknife standard error estimates to account for

extra variation in a d¢ = 1 Rasch mode! due to guessing and “sleeping” behavior.

Also important in assessing the standard errors of ability estimators is the uncertainty
involved in estimating RCC's. Tsutakawa and Soltys (1988) have incorporated RCC un-
certainty into posterior mean estimator standard errors under Ll in the dichotomous case.
Adapting such methods to the EI setting will be of great importance iu eventually under-
standing the true error structure of estimated IRT models, but that is beyond our present

scope,

Although the results of this paper are stated and proved in the polytomous case, it

js expected that they will find greatest application in the dichotomous setting, where IRT
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techniques have been most fully developed. For the reader’s convenience, the main points
of Sections 4 and 5 are restated for dichotomous responses in Sections 6—these results
are also new in the dichotomous case. Finally, Section 7 summarizes the conclusions of
our work, and indicates extensions to other popular LI-based trait estimators, such as the

posterior mode and posterior mean.

2. Essential Independence and Item Sequences

The notions of essential independence and essential unidimensionality were introduced
in Stout (1987) and explored in the dichotomous case by Stout (1990) and Junker (1988). In
the factor analytic tradition, but with a decidedly non-factor-analytic perspective, Stout
seeks a criterion by which only dominant dimensions can be counted. When only one
dominant dimension is counted, the test is said to be essentially unidimensional.

The fundamental idea behind essential independence is that a trait vector © is dom-
inant if, after conditioning on Q the residual covariances among the items are small on
average. This parallels the idea, in traditional IRT, that if the latent space is “complete”,
then the residual covariances are all zero. A partial answer to the question of how small
the residual covariances must be for © to dominate has been provided by Stout’s (1987)
statistical procedure for assessing essential unidimensionalitv in a fixed, finite set of di-
chotomous items. If the residval covariances are small but not zero, Q continues 10 have
many properties of L1 latent trait vectors: it is strongly related to the totai test score, it
is better and better identified as the test length grows, etc.

To examine properties of © and ofg estimators as test length grows, it is necessary to
embed the finite test X,,...,.X; in an infinite collection of items /_\_’ For example, results

of Levine (1989) make it clear that not even the distribution of © is completely identifiable
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from a finite-length test, let alone particular examinees’ 6 vectors. Such an embedding is
implicit even in traditional discussions of IRT trait estimation (e.g., Birnbaum, 1968, pp
455-457; Lord, 1980, p. 59).

The substantive interpretation of this embedding varies from application to appiica-
tion. In some settings it may be reasonable to imagine that the process used to generate
the test X;,...,X,;—which may, for example, involve many item writers and reviewers
generating items of the same character and in the same way—is simply continued to pro-
duce more and more items. Or. it may be reasonable to think of X,,..., X, as forming a
(stratified) sample from a large item pool, as when test forms are constructed by hand ac-
cording to a test specification matrix, or constructed “on the ly” in computerized adaptive
testing (CAT). Other interpretations may also be appropriate.

All such interpretations may be encompassed in the following framework. In practice,
a test form of length J + 1 is seldom obtained by simply finding a form of length J and
tacking one more item onto the end of it. Instead, forms of differing lengths—intended to
measure the same construct—will be constructed at different times according to slightly
different design specifications. Thus, in attempting to understand what is meant by letting

the test length J grow. we may consider a sequence of tests

}’1 = (X11),
X2 = (X35, Xa2),

Af3 = (XJIQ'YSQQXSS)v

A’J = ('X’JXQXJ?qXJSq"' !XJJ)"



in which the test of length J need not be a subtest of the test of length J + 1, for any J.
The only requirement here is that e.ch test be designed to measure the same construct.
LI and other properties of the traditional IRT model extend in a natural way to such a
sequence of tests by requiring that they hold in every test X ; in the sequence. We will
abstract the idea that the tests “measure the same construct” by assuming that O is the
same from test to test, and that when an item appears in more than one X, it has the

same response curves each time it appears.

This framework allows us to make mathematically rigorous statements about the
identifiability, uniqueness, and estimation of dominant latent traits as test length grows. It
is justifiable insofar as it helps crystalize ideas about finite-length tests with both dominant
and minor dimensions, or it suggests ways to improve the analysis of real tests. The sense
in which Q 1s the dominant influence, essential independence, will be carefully defined in
the next section. For now we remark that it is not necessary to arrange the items within
Xy in any particular order to acheive this. Rather, essential independence requires that
the relative influence of minor factors not included in © be weaker—through cancellation

between items, moderation within items, etc.—in longer tests than in shorter ones.

Formally, this framework leads to a rather messy notation, since it adds a “test in-
dex” J to all quantities under discussion: a;, becomes aj;m, 4; becomes Ay;, etc. For
simplicity’s sake, we will retain the notation of Section 1 in what follows, and speak infor-
mally of embedding the fixed test X, as the first J items in a single infinite item sequence
X = (X1,X32,Xs,...). The reader should bear in mind that the results below also apply

8
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to the more general framework described above.

3. Essential Independence for Poiytomous Items

The traditional approach in IRT is to say that a latent trait (vector) © completely
controls the interesting variation in the item responses if LI and M hold. In contrast,
we would like to be able to determine whether the latent vector © is the dominant in-
fluence underlying the item responses. Moreover, © should dominate regardless of how
the responses are sccred. Thus, it is appropriate to consider an arbitrary scoring scheme
{a;m} and corresponding item scores A; subject only to the constraint that there is some
M < oo such that |a;m] < M for all j,m. All of the scoring schemes considere. “eiow
will be bounded in this manner. If (2 is to be the dominant latent trait vector, we should
at least require that the variation of the raw score, j] = lj 2;_;1 Aj, be small when we
condition on Q, as J — oo.

Definition 9.1. The sequence of polytomous :tems X is essentially independent (EI) with

respect to the latent trait(s) © if and only if, for every bounded scoring scheme {a,, } and

every 6.

-3 J =1
lim (;) > Y Cov(Ai A 10 =86) =0. (EI)

J—o0 ‘
1=] 5=
This definition of EI for pclytomous items, which is equivalent to requiring that
lim j— oo Var(A, | © = 6) = 0 for every bounded scoring scheme, directly generalizes Stout’s
definition of strong £ for binary items (Definition 3.5, Stout, 1290). Stout’s various defini-
tions of essential independence are likely not equivalent in general, but they are equivalent

when the residual covariances are nonnegative (as seems plausible in many educational

9
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testing contexts; see the discussion following Theorem 5.1 below). Only the strong EI
definition generalizes naturally to tke polytomous case. and for this reason it is preferred
in this paper.

Clearly, every LI item sequence is FI. Since the covariances above are unaffected by
shifting the coefficients from @jm to a¢';m = ajm + ¢;, for any constants ¢,, we see that
Definition 3.1 is equivalent to ones in which only positive, bounded a;. are allowed; or
only bounded a;m for which at least one response from each item has a;m = 0 are allowed;
etc. Now, consider the expected item scores,

n—1
A;(8) = E[A; [0 =6 = D ajmPim(6),

m=Q0

and the expected raw test score, or test characteristic function.

Theorem 3.1. The following are equivalent, for a sequence of polytomous items .¥:

(a) X is EI with respect to O;

(b) For each bounded scoring scheme {a;,, } and each 6.

im E[(A; - A;(8)|10=6]=0:

J—00

(c) For each bounded scoring scheme {a;m} and each 8,
1 J n=~1
522 aim [ Yim = Pim(8)] — 0
J=31 m=0

in pro@ability, given (f_r = g, as J — oo.

10
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Proof: The proof is an easy extension of the proof of Theorem 3.2 of Stout (1990). [

Estimating .f{,(g) is not necessarily useful unless O is unidimensional. Just as with bi-
nary items, a particular value ﬁ,(g) may be possible for examinees with radically different
6’s due to compensation among the components of §. Hereafter. we will restrict ourselves
to ur.dimensional traits © ard consider estimating each examinee’s 6.

When O is unidimensional, some sort of monotonicity condition becomes useful, so
that we can estimate § with §; = .i;’ (Ay), where /i;‘ () is the inverse of A;(6). (In the
usual binary setting /i;’(/i;) = }_’;'()?J), for example.) In models that award partial
credit for partially-correct answers, it seems natural to require that the expected amount

of partial credit awarded on each item increases with the level of the latent trait:
A; () is nondecreasing in § for each j. (M")

What is the relationship between condition M in Section 1 and M’ above? We will
call a sequence of items X for which the item response categories {z,,,} are indexed so
that M holds an ordered-response item sequence. On the other hand, if a scoring scheme
{a;m} satisfies, for each j,0 < a;0 € a;; < ... < aj(n-y), we will call it a ordered scoring

scheme. Then, with the convention that a(_;y =0,

n-—1} n-1}
A,(0) = Z a;jkPj(8) = Z (@Gjm ~ Qjim—y))Pim ().
k=0 mx0

It follows that condition M is equivalent to M~ holdirg for every ordered-response scoring
scheme. M is a condition that has been considered for many parametric ordered-response
models. For example, Samejima (1972) has shown that M does hold for her graded-response

11
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model, as well as for Bock’s (1972) tominal model constrained to apply to ordered-response
items (also, see Thissen and Steinberg, 1986). A somewhat milder form of monotonicity
called LAD .5 sufficient to build the estimator 4.

Definition 3.2. The ordered scoring scheme {a;m } is asymptotically discriminating (AD)

if and only if there exists an € > 0 such that

J
1
v Y (@jeno3y - jo) > € V J. (AD)

j=1

The item sequence X is locally asymptotically discriminating (LAD) if and omnly if, for each
AD ordered scoring scheme {a;m}, to every # there corresponds an interval Ny containing

8 and an ¢; > 0 such that

As(t) — A;(0)
t—60

> ¢co, VIE Ny, t#86, V J (LAD)

This generalizes LAD for binary item sequences as presented in Definition 3.8 of Stout
(1990). Note that LAD imposes a minimum discrimination condition on the test charac-
teristic curves at each #, as J — oo. Also, the items themselves need not have ordered
responses; only the scoring schemes {a;, } need be ordered. LAD may b~ viewed as nat-
urally extending the interpretation of M—that the expected amount of credit awarded
increases with the examinee’s ability—from a fixed-length test to an item sequence, with-
out strictly requiring M to hold for every item in the sequence.

Theorem 3.2. If the polytomous item sequence X satisfies EI and LAD with respect to the
unidimensional trait ©, then for each 6 and each € > 0, if {a;m} is a bounded AD ordered

scoring scheme, then
Jlim P{I|AT'(A))-60|>c¢l@=6)=0.

12
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Proof: Virtually the same as the proof of Theorem 3.6 of Stout (1990). O
Theorem 3.3. If the polytomous item sequence .K satisfies El and LAD with respect to the
unidimensional trait O, and satisfies EI with respect to another latent trait 7, then there

exists a nondecreasing function ¢(t) such that
PO =g(r)]=1

Proof: Follows Theorem 3.3 of Stout (1990) or Theorem 2 4 of Junker (1988). U
Theorems 3.1 through 3.3 show that if EI and LAD hold, we can estimate a unique
dominant latent trait with any reasonable fi;] (A;): any other dominant trait we might
find will be change-of-scale of the trait we have estimated with .:1';’ (A;). (This is the same
level of trait uniqueness as exists under the general d; = 1 model, although particular
parametic models—for example, the Rasch model—may possess additional scale proper-
ties.) Since under El and LAD we can identify and estimate a unique unidimensional
dominant trait in the item response data, we will call this situation .ssentially unidimen-

sional dg = 1. When no single dominant trait exists in this seuse, we will write dg > 1.

4. Maximum Likelihood Ability Estimation
Often it is desired to estimate individuals’ § values, treated as parameters in the

conditional model.

J n-—1
PX;=z510=6=]] I] Pim(sy»~,
j=1m=0
where y;,m = 1 when r;, = z,,,, and 0 otherwise (i.e., ¥im are the observed values of

Y;m). If the polytomous item sequence X' does not satisfy LAD, the estimators described

13
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in Section 3 may not exist, let alone be consistent for §. Even when LAD holds, it may be

desirable to have a more-efficient estimator than ﬁ;’ (Aj).

One common method of estimating individual examinees’ abilities is via mczimum
likelihood, treating each examinee’s § as an unknown parameter to be estimated and the
RCC’s as known. When LI holds, the maximum likelihood estimator (MLE) 6, is known
to be a consistent estimator for § as J — o0, and has good asymptotic distribution prop-
erties (asymptotic normality, efficiency, etc.), assuming that the RCC’s are known (e.g.,
Lehmann, 1983). We wish to investigate the behavior of §; computed under the (false)
assumption of LI with respect to © when the item sequence satisfies EI. Technically, é_; is
called an M-estimator since it is no longer based on the true likelihood, which is unknown
under EI (e.g., Serfling, 1980, pp. 243 fl.). However, for convenience we will continue to

call ; the MLE, since it is based on maximizing a (wrong) likelihood.

There are two reasons for working with the MLE. First, it is commonly used for exam-
inee scoring in applied IRT work, so we are compelled to know its behavior under realistic
violations of LI. Second, the behavior of the MLE may be taken to be representative of
the behavior of other likelihood-based methods. Qur work with the MLE is intended to
suggest that similar robustness to departures from LI within an EI framework could be
expected of other popular estimators and predictors, such as estimators of the posterior
mode and posterior mean (e.g., Samejima, 1969; Bock & Mislevy, 1982; Lord, 1986). This

point will be taken up again in the discussion in Section 7.

Let us now turn to the requirements for consistency of §;, the convergence of 8, to 8

14



as J grows. Assuming (incorrectly) that LI holds with respect to ©, the log-likelihood for
estimating one examinee's § based on his or her item responses X ;—or equivalently, the

response-category indicators Y, —is

J n~i J n-1
28 = 1og [I II Pim@®¥~ =33 2,m(0)Y)m,
j=1m=0 =1 m=0

where A;jm(8) = log P,m(6). Thus, 6, must satisfy the likelihood equation

n—1

J
1 . 1 -
75'1(91) =7 E: E: ANim (87)Y;m = 0. (2)

j=1 m=0

Under LI, the fact that %t"](ﬂ) ~ (0 as J — oo allows us to locate a root 85 of (2) near the

examinee’s §. Under EI, Theorem 3.1(c) ensures that

J n-1
1 1
753(9) =75 DD N (@Y m — Pim(8)] — 0, (3)

Jj=31 m=0

in probability, given © = 6, as long as the scoring scheme a,, = /\;m(ﬂ) is bounded
uniformly in j and m for each 8. Hence, we can expect to find a root é_, of (2) near 6 under
El as well. The dependence of a;, on 6§ here is irrelevant, since we are couditioning on
O = 6 fixed.

To obtain the limit (3) and similar limits needed for consistency of é_; , we assume that

for all 8, there exists an interval By containing § and a constant Afy < oo, such that

N ()] < MgVt € By, Vj, m. (4)

im

Condition (4) is really a fairly mild modeling assumption. For example, in the binary
three parameter logistic model it would be satisfied if all the difficulty and discrimination
parameters were bounded in absolute value.

15



A second important consideration in likelihood-based (or indeed any) estimation is
identifiability of the parameter. The criterion used for identifiability in Section 3, LAD,
is not necessarily appropriate when the response categories are upordered. Instead, it is

typical and reasonable to require that for each 6, there exists an ¢4 > 0 such that

J n-=1}

7,8 = Z D N _(BP.(8) 2 e, V J. (5)

)zl m=0

I;(8) is, of course, the usual test information Sfunction. If (5) holds, there is enough
identifiability for the MLE to work. The following proposition gives several sufficient
criteria for identifiability in this sense.

Proposition 4.1. If any of the following conditions hold, then (5) hold..

n—1 [P (897
) ‘[__;M.]_ZQ,VJ;

J
(a) Ve, 3e>0:13% m=0 " P, ()

=1
(B)VE, 3e>0: 3T T NP (0) >, VI
(©)VE 3ea>0: 3T/ TN [P (6)|2 e VI
(A)VE 3eg>0: 2T T Pl o(6)>eq, V.

=1 ms=]

Proof: Condition (a) is exactly (5); condition (b) suffices by (a) and the fact that

1/P;jm(8) > 1 always holds: condition (c) suffices by (b) and the fact that

J n-1 2
1 )
2 Simaer 2 {2 >F im0 )
Jj=1m=0 J=1 m=0
by Jensen’s inequality (Ash, 1972, p. 287). Finally, condition (d) suffices by noting that

70 = Z{Z‘ O {}: (e)}z}.

;m(e) )O(o)

j—l m=]

and, using Jensen's inequality again,

5 (S o) s (1552

m=} =1

Z (9)}2. O

m=])

Fjo(6)
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The most interesting of the criteria in Proposition 4.1 is (d). Note that by taking
a;o = 0 and a;m = 1 for m > 0 in the definition of LAD, we see that if LAD holds and the
RCC's are differentiable, then (5) holds also.

Each of the conditions M, LAD, and (5) represent identifiability or detection condi-
tions for the sequence X and latent trait ©, and they fit into a rather neat hierarchy for
essentiallv independent smooth IRT models. M is the most restrictive identification con-
dition; it imposes a highly interpretable condition on each item in the test which virtually
guarantees LAD. LAD is less restrictive, in that it imposes the interpretation of M at the
test characteristic curve level, not the level of individual items. Moreover, LAD implies
(5). The minimum information condition (5) is least interpretable, but has the advantage
of widest applicability. Moreover, as Theorem 4.1 below shows, if (5) holds, then 8, con-
ve:ges to 8, given @ = 6. This hierarchy is not new or deep mathematically, but serves to
illustrate the transition from intuitively appealing psychological models to adequate but
less pleasing statistical ones.

Theorem 4.1. Let X bea polytomous item sequence satisfving EI. (4) and (5). Then there

exists a sequence {é; :J > Jg)} of roots of (2) such that

lim P[l 6, -68|<¢e0© =8 =1,

J—c0

for every € > 0.

Note that the sequence é; may not start at J = 1, and for small J, there may be no
solutions to (2). This is not a serious limitation; see Theorem 4.2 below. Also, when LAD
holds, the trait being estimated is the same dominant trait whose estimation was treated
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in Section 3; this follows from Theorem 3.3. The novelty of the following Cramér-style
proof is that (local) independence is not assumed.

Proof: Let ¢¢ > 0 be arbitrary and fixed in advance. Without loss of generality, we assume
that (6 — €0,0 + ¢¢) C By, where By is the interval given in (4). Our goal is to obtain
roots of (2) in the interval (8 — ¢y,6 + ¢). The second-order Taylor polynomial for %t"_,(t)

in (0 — ¢4,0 + €g) is

60 = 36(6) + (= O650) + (e - 07 £5(6) (6)
1 J n-1 ’
= = E Eo A (8)Yim
1 J ne} 1 J n-1
+(t - 6)= D DA (O + (L - 9)’2—_]- > A ()Y,
J=1 mm0 Jj=31 m=0

where { = 6 +r(t — ), for some 0 < r < 1. We have already shown in (3) that Z€,(8) — 0
in probability, given € = 6, urder EI and (4). Similarly

J n-3
1
7 z z A;’m(g)[yjm - PJm(g)] — 0.

J=1m=0
Since E{-}t”_;(ﬂ)l&] = —1,(6), this implies that -%f’_;(&) + 1,(8) — 0 in probability, given

© = 6. Hence, using (4) again, we may rewrite (6) as

1, - 1
760 = 0,(1) = (t = OII1(8) = = ( - 6)ps M),

where p; is a random quantity satisfying | py | < 1, 0,(1) denotes quantities tending to
0 in probability, given © = 6, and 1,(6) is bounded away from 0 by (5). Thus, for large
J, %ff,(t) is approximately linear near 6, and with large probability is positive for some

18



t, € (6 —eo,8), negative for some t_ € (8,0 + ¢ ), and by continuity equal to zero for some
é_; € (@ ~ €,0 + €0.) Hence, there is a sequence é_, of solutions to (2) with the property
that for any ¢ > 0,

Pll6;,—6|< |0 =26 —1,

as J — oo. Further details may be found in Serfling (1980, pp. 143-148).

In general, we do not expect the roots 6, of (2) to Le unique (e.g., Samejima, 1973).
Moreover, among the multiple roots of (2), there is likely to be only one consistent root
sequence: Foutz (1977) proves that if é,,_; and égﬂ} are both consistent root sequences,
then under LI, P[é1'] = ég‘_} |©@ = 6] — 1 as J — oo. Thus, the situation, even under LI,
is opposite that portrayed by Lord (1980, p. 59): rather than being optimistic that the
roots should be eventually unique, one might be pessimistic that multiple roots continue
to happen as J — oo, and only one of these roots for each J, brings us closer to the true 6.

This is not a practical problem, however. We shall see next that the standard practice
of approximating a root of (2) by Newton's method, produces estimates that are consistent
for 6 under EI, even though the MLE and the Newton’'s method estimate of it were com-
puted under the assumption LI. Thus. familiar numerical methods continue to be useful
in estimating 8 under EI.

Theoremn 4.2. Suppose the assumptions of Theorem 4.1 hold, and let é,y be any sequence

of consistent estimates for 8, given © = . Then the Newton's method improvement,

6 =6, — 3’_;(0;1)
£5(8,5)

~3

\ (M)

is also consistent for 6.
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Proof: As in Lehmann (1983, p. 423) we may substitute a Taylor expansion of %6’1(5;)
about ¢ into (7) to obtain

1 i
65 — 6= _—ﬁg)-ﬂo,-e).o,u). (8)
5€5(6,)

The second term on the right clearly tends to zero as §; — 6. For the first term, a continuity
argument shows that ~1¢/(6,) = 7,(8) > 0, and we know from (3) that $¢,(6) — 0.0
Clearly, the assertion of the theorem can be iterated to show that the result 85 of,
say, twenty Newton steps from 6 ;7 would also be consistent. Such an estimator should be
closer, in some sense, to the consistent roots found in Theorem 4.1. Newton's method
requires an initial guess 51; when LAD holds, 51 = A—;’ (A;) is a natural choice, in view

of Theorem 3.2.

5. Standard Error of the MLE

In the usual LI ability estimation theory, we expect that the sequence 6.’] will be

asymptotically normal and efficient,
J3(6s = 8) ~ AN(0,1/1,(6)). (9)

as J — oo, where 7,(6) is the traditional test information function introd-iced in (6). A
result like (9) identifying the standard error of §; is needed to do statistical inference using
6 ;—or indeed, merely to know how well to trust 6, as an estimator of 8 for particular fixed
J that arise in applications. However, (§) may fail in the essentially unidimensional case
in two interesting ways: it may be that asymptotic normality holds but the asymptotic

variance is no longer /,(6)~?; or it may be that asymptotic normality fails completely.
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When asymptotic normality does hold, we shall see that the deviation from the efficient
variance is controlled by the quantity
9 L i
Cs()= =33 Cov(4, 4,10 = 6), (10)

=) y=1

where the item scores A; are constructed from the scoring scheme
Gim = A, (6), ¥V j,m. (11)

The scoring scheme (11) is a technical device that will be used throughout this section.
The reader should not be mislead into thinking that (11) is a scoring scheme that could
be applied to obtain a practical estimator as in Section 2 (to do so, we would already have
to know 6!). Under EI and the bounds (4), we know that %C_] (8) — 0, for all 4, but the
behavior of C;(0) itsel. depends on the amount of local dependence in the item sequence
/X. Under LI of course, C;(0) = 0.

To see the effect of C,(8) on (9) under EI, we may deduce from (6) that

p J-3¢,(6)

16 - 0) =~ - , 2
Ji(6,; - 6) 7, 0) (12)

in the sense that the asymptotic distributions of the left and right hand sides are the same.
If we can identify the asymptotic distribution of (a multiple of) J~3¢,(8) then by (12),
we will also be able to identify the asymptotic distribution and rate of convergence of 8.

An indivation of what is possible is provided by Theorem 5.1 below. Let us abbreviate

c3(8) = Var(A, |6)
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i—-1

J J
2
- %Xmu, |o)+3-,-§Z§ZCov(A.-.A,- 16), (13)

j=1 i=}) j=1

for whatever scoring scheme {a;m } is currently under consideration. Under the scoring
scheme (11), A; = A;(9) = 1€,(8) and 03 (6) = 1(7,(8) + C,(6)].
Theorem 5.1. Suppose that the conditions of Theorem 4.1 hold for the item sequence X

and the latent trait ©. Also, suppose that for some fixed 6, the scoring scheme (11) yields

710) {f;] - AJ(&)] ~ AN(0,1). (14)

Then, as J — 00,

(a) if Cs(8) — 0 as J — ox,

: 1
736, - 8) ~ an(o, i,(o));

(b) if C;(8) remains bounded for all J,

1;(0) +Cs(6)\
1;(8) ,

736, - 6) ~ an(o,

() if C;(#) is unbounded and R(J) is a function of J for which R?(J)C,(8)/J remairns

bounded,

3 R*(J)C,(8)
R(J)(6,; —8) ~ AN (o, T @)

Proof: From (12) and (14), only the asymptotic variance assertions need to be checked.

For the scoring schemme {11), we have from (12), (13), and (14):

R(J)¢,(9)
JI;(8)

_ _R) {1’ PN
_ij(a)zv;u JE:,MG_@J

Var(R(J)(6, - 6)|6) ~ Var( ©=6)

Jj=1
- R*(J) I,(8) + C,(6)
J I32
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The assertions about the asymptotic vuriances in (a), (b), and (c) follow from this calcu-

lation by choosing R(J) appropriately. [

Conditions (a) and (b) of the theorem correspond to the familiar case in which the rate
of convergence of 8, to 6 is J-i1f C;(6) — 0 as J — oo, we get the usual asymptotically
normal and efficient result (9) for §;. Otherwise, we get subefficiency or superefficiency de-
pending on the sign of C;(68). The use of the terms efficient, subefficient, and superefficient
to describe the asymptotic variance as being equal to, greater than, or less than 7, (6) is
suggestive here but perhaps misleading. In fact, f;l (6) is the efficient variance only when
£;(8) is the true log-likelihood function. Under EIl, some other (unknown) log-likelihood
function L ;(f) applies, and examining the true efhcieucy of é, would require access to the

(unknown) function E[~L';(6) | 6].

Condiztion (c) corresponds to the rate of convergence of 8, to 6 being slower than J73.
This would happen, for example, if the inter-item covariances were generally positive and
sufficiently large to force C;(6) to be unbounded. Formally, there is also the possibility
that the convergence of 6, to 6 could be faster than J~%, but this would require that
I1;(8)+ C,(6) — 0, that is, C;(€) negative for all large J. As we will argue next, this seems
unlikely in many educational testing applications. Hence, this possibility was omitted from

the theorem statement.

For reasonably homogeneous tests, one intuitively expects that items not independent
given © would be positively correlated. This is certainly implicit in the factor-analytic

tradition of test theory, (e.g., Anastasi, 1988, pp. 377 ff.). An example of the invocation of
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this principle in IRT research is the design of the simulation study in Drasgow and Parsons
(1983). Indeed, it is quite reasonable to assume that if /_\_’ is essentially unidimensional with
respect to the trait ©, there are otlier traits ©,,0;,...,04 such that LI holds with respect
to the d-dimensional trait vector (6,0,,0;s,...,04) (see, for example, Stout, 19§9). If
these traits are psychologically meaningful, it is also reasonable to assume that they will
be associated (see . lland and Rosenbaum, 1986, for a definition), given © = 6. In the
ordered-response case, a result of Jogdeo’s (1978) can be used to argue that conditional on
© = 6 alone, the inter-item covariances will be nonnegative (indeed, any ordered scoring
scheme for X, given @, will be associated). Thus, C;(f) > 0 will generally be expected:
the variance of J?(8; — 6) will generally be higher than 1/],(6).

Theorem 4.2 gave a practical way to approximate the estimator ;. The following
corollary extends Theorem 5.1 to obtain asymptotic normality for this approximation.
Corollary 5.1. Suppose that the conditions of Theorem 5.1 hold, and that 6, is any
estimator with R(J)(é_, —6) bounded in probability. The Newton’s method approximation

65 of Theorem 4.2 based on 51 satisfies

. R*(J) I;(8) + C;(6)
R(J)(65 - 6) - an (o, - s ).

Making appropriate choices of R(J), we obtain the same three cases as in Theorem 5.1.

Proof: Using (11) and (13), we may rewrite (8) as

RO, — 8) = R()ZLT A1) {U,(8) + Cs(8))/J}/7

o5 (8) 1,(6)

+ R(J) (8, - 8)o,(1)

The result follows from (14), since R(J)(8, — ) is bounded in probability. [
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By definition. R(J)(8, — @) is bounded in probability if P[R(J) |6 - 6 | < B|© = 6]
cau t'¢ made arbitrarily close to 1 as J — oo by choosing B large enough. In Section 4
we sugg ested using 6; = ‘i;’ (Ay), for any convenient scoring scheme {a;m }, as an initial
guess for Newton's method under LAD. Routine calculation using Chebyvshev’s inequality
shows that R(J)(8; — 6) will then be bounded in probability as long as
J -1

> Y Cov(Ai, A, |© = 6) is bounded, (15)

=1 y=1

R?(J)
J?2

as J — oo. This represents a strengthening of EI since R(J) is a fixed, increasing functioa
of J for all §. The assumption that (15) holds for scoring scheme (11) is also implicit in
Theorem 5.1. Hereafter, we will say that fast EJ holds if (15) holds for a fixed rate R(J)
and every bounded scoring scheme {a,;n}.

Theorem 5.1 also assumes that the raw score 4, is asymptotically normal in the
sense of (20). Is this realistic? The following Central Limit Theorem (CLT) for dependent
random variables. easily deduced from Theorem 2.2 of Dvoretzky (1972), sheds light on
the qualitative side of this question.

Theorem 5.2. Suppose, for some fixed § and some bounded scoring scheme {a,}:

(a) J2o%(8) — oo;

(b) 725 Z;=y ElA,; — 4;(6) | 4;_,.,6] — 0; and

(€) Trorgay =y Varld; | 4;-1.6] — 1.

as J — oo. Then, for this § and {a;, },

570 [A, — A,(8)] ~ AN(0,1). (16)
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The assumptions of Theorem 5.2 wculd be difficult to verify in practice, but this is
somewhat offset by the fact that they are intuitively meaningful; thus, we can at least ask
whether these assumptions are qualitatively appealing. Assumption (a) is merely a way of
ensuring that most items contribute significantly to 4. It is difficult to imagine a useful
item sequence or scoring scheme for which this would not be true. The conditioning in
(b) is not only on a fixed value # of O, but also on a fixed value of jj.., , for each j. If
the conditioning on Zj_, were dropped, (b) would become an exact equality. Under EI,
conditioning on © = 8 stabilizes 4;_, with high prcoability when j is large (Theorem 3.1).
so we might expect that assumption (b) would hold for many EI item sequences. To gain

some intuition about assumption (c), we may rewrite it as

%Z:;;,Var(A,' | 8) . %Z.L, Z;;J, Cov(Ai.A; | 6) , an
J - ’ J = — i
% ;=1 VN(A) !AJ'-I !8) ':li j=1 VN(A) lAj—l !0)

Hence, recalling that the A; are bounded, (c) implies the fast El condition,
g i
= 5”3 Cov(A:. A |6) is bounded, as J — oo. (18)
i=1 =1
This condition is almost ubiquitous in general CLT’s for dependent random variables (e.g.,
Bradley, 1985). Note that (18) precludes applying Theorem 5.2 in the situation of Theorem
5.1 (c); moreover, from (17) we can see that some additional balancing between the variance
and covariance terms is needed for assumption (c¢) to hold. Example 5.2 below shows that
Theorem 5.1 (c) can nevertheless occur.
There is another way in which the assumptions (b) and (c) are not entirely innocuous.

El and its strengthening (18) are second-order conditions (i.e., conditions that restrict only
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the expected values (given 6) of products of two item responses at a time). It is well-known
that second-order conditions alone are not enough to guarantee (16). An example (without
reference to latent traits) is constructed by Bradley (1989, Section 2) of a dichotomous
sequence X for which X, and X; are independent for every pair i # j and yet the CLT
fails. (The reader is referred to Bradley’s paper for the rather complicated construction;
also, see Bradley, 1985.) In light of the recent interest in Markov dependence among items
(e.g., Jannarone, 1986: Spray & Ackerman, 1986), it is intriguing to observe that Bradley’s
example arises as a dichotomous scoring scheme for a Markov chain.

We conclude this section with two simpler examples illustrating the practical effects
that item dependence can have on the standard error of é_;. The examples are both vari-
ations of the paragraph comprehension example of Stout (1990; Example 2.3). Section
4.2 of Rosenbaum (1988) is also relevant. More complicated examples and/or examples in
other realistic settings might also be constructed.

Ezample 5.1. Suppose X;.X3,X;,... are binary item response \'ariables.’ having the same
response curve P;(8) = 6 (so the latent scale is the interval (0.1) and P[X,; = 18] = 6).

Moreover, suppose that the items are arranged in successive groups of g, items as
fxrls-"?v-" 1!Yg,;

Xy‘+),X9.+2,... ,.¥29‘;

€tc.,

such that different groups of g, items are independent of one another, given #, and items

within a single group are positively correlated, given #. For simplicity, we will take

cif X; and X, are in the same group,
Corr(X;. X;|8) = { , 7 group
0 if not,
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for some fixed ¢ € (0,1]. This is a naive model for a paragraph comprehension test in which
several paragraphs are presented and g, questions are asked for each paragraph. Here. ¢
represents a trait common to all the items, which we might wish to think of as reading
comprebension; and the nonzero correlations are induced by nuisance traits, for example,
specific knowledge about the subject matter of the paragraph at hand.

It is straightforward to verify that EI holds for this sequence of items; that is, for

1,2,...} generating item scores A; =

any bounded scoring scheme {g8jm : m = 0,1;;

(1- X,)a,-o + ‘Yjaj]y
| JL i
= >3 cov(ai, A, 16) —o.
=1 5=1
Moreover, it can be verified (via Theorem 5.2 or by applying the usual CLT to the para-

(k+1)g,

graph scores G, = Z;=k9,+1

A;) that for any bounded scoring scheme {a;m} for which

Joj(6) — oo,

T [A) ~ 4,(60)] ~ AN(0,1),

given © = 6. Now, for the scoring scheme (11), the item scores are A, = (X, -6)/6(1 -8
so that Cov(4,,A; |6) = c/6(1 ~ ) if 4; and A; are in the same group, and 0 otherwise.
Letting k, be the greatest integer less than or equal to J/gg, we see that

&,

Cj(e)zgz(go> c _clgo=1)

J N2/ 6(1-6) " 81~

and is bounded but nonzero as J — oo. Hence, using scoring scteme (11),

1 9(6) Ay~ A;(0)

Jéé — @)~ J7 —
(65 -6) ;60 ;(8)
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and is asymptotically normal with mean 0 and variance

C(SQ‘-I)
200 L
Jo;(8)  sG-6 T e01-6) _ 8(1 — 8){1 + c(go - 1)}

fJ(0)2 [0“1-')]2

Note that the deviation from the efficient variance 6(1 — 6) is indeed due to dependence
among the g, items related to the same paragraph, and that C;() = ¢(g, — 1)/6(1 — 6)
appropriately characterizes this deviation. This illustrates part (b) of Theorem 5.1. O
The situation can be understood intuitively as follows: when items in a group are
positively correlated given 6§, a particular response to one item in the group is likely to
be duplicated in responses to other items in the same group. Thus, a wrong response is
likely to bias the 6-estimate downward more than is usual, and a right response is likely
to bias the estimate upward, the biasing effect being magnified by the size of the group.
This inflates the effect of noise inherent in the §-estimation prot’ m.
Ezample 5.2. Now let the sizes of the groups of mutually dependent items increase. Ve
take dichotomous items X, .X;,... with identical ICC's P,;(#) = 6 as before, but now group

them as follows:
,\'l.krz,.. . ng(l);

Xomy+1: Xg+2,-- -+ Xg(n)+9(2);

etc.,
where g(k) is a nondecreasing function of k. For specificity, we will take g(k) = k%. Once
again, each group of g(k) items is independent of the other groups, and for simplicity, we
take Corr(X;,X,) = c for X, and X; in the same group. We can verify that EI holds for
this sequence of items, and apply Liapunov's Central Limit Theorem (Serfling, 1980. p.
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30) to the paragraph scores

»
Z,“ #(0)
Gy = z A;,
Z: #(0)+1
to conclude that
[A; — A;(8)) ~ AN(0,1),
o;(8)

given © = 6, for any bounded scoring scheme {a;m }. (Here, Theorem 5.2 does not apply
at all, since we shall see below that C;(0) — o0.)

As in the previous example

Croy = 2 i (g(k)) c

J =1 2 /7601 -6
where k; is chosen so that
ks k;+1
d_gk) ST < 3 glk),
k=] k=1

that is, k; = (%)'3.]'3 for g(k) = k%. Thus, C,(8) grows like

T, ek

~ 1
Yol g(k)

Ji.

9 5
53

(Incidentally, this also helps establish EI, since it shows that C,;(6)/J — 0 as J — oc.)

Hence,

{(JEL0) +J73C, (00 A, - 4,(8)
508 os(8)

Ji6, -6 2

which is asymptotically pormal with mean zero and variance J'§CJ(9)/I_J(0)2 =
(0.871)cé(1 — #). Although the asymptotic variance appears lower than the efficient vari-

ance (1 — 8), the rate of convergence of 8§, to 6 is only J-3 , rather slower than the usual

ate J-3.0
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In this example, the groups of dependent items become so large that the magnified
effects of individual item responses have actually slowed the rate of convergence of é_; to
6. These magnified effects would be present in any 6-estimation method that ignored the
nature of the inter-item dependencies. However, this need not be an argument against
using estimation methods that assume local independence when this does not hold. The
real lesson is that if one wants to continue to use a familiar estimator like §; even though
LI may fail. then one must be able to qualitatively justify an asymptotic distribution
assumption like (14), and to quantitatively estimate C,(#) so that realistic standard errors
of estimation can be calculated, etc. Note that in Example 3.2, C;(6) is unbo'unded as
J — oo, but EI still holds; the unboundedness of C;(6) is responsible for the slower rate

of convergence of 8, to 6. If C;(8) grows too fast as J — oo then EI itself can also fail.

The quantity C;(8), or perhaps its average value over all §'s, should be viewed as an
index of departure from local independence, locating collections of items—tests—along a
continuum of unidimensional behavior from strictly locally independent unidimensional,
dp = 1. situations to dramatically non-unidimensional. dg > 1. situations. This suggests
the following model fit/trait estimation taxonomy, based upon the index C;(6) (contingent.

of course, upon the qualitative acceptance of (14)):

I. C;(6) = 0 for all realistic 's. In this situation, ability estimation based on a
d; = 1 model could proceed as usual, using familiar standard errors such as 7,(8)"!/2.
This situation covers both di = 1 settings as well as those essentially undimensional,
dp = 1, settings that only mildly violate LI.

31

34



I1. C;(6) # O but moderate in size for all realistic §'s. Here, O-estimation procedures
based on LI could still be used but the conventional standard errors would have to be
replaced by (7,(8) + CJ(G))”’/I'J(G). This would be the usual dg = 1 setting.

II1. C,(0) # 0 of substantial size for many 6's. This would suggest that there is
so much residual variability in the data after conditioning on ©, that some genuinely
multidimensional latent trait model may be needed.

Of course, the practical use of such a taxonomy rests on effective estimation of C;(6)
itself. Work recently completed by Nandakumar and Stout (1989) aims at developing a
practical index of EI for binary items, related to C;(6) but not adapted to the task of trait
estimation. In particular, they investigate empirically the extent to which dg = 1 holds
or fails in the paragraph comprehension setting, as the number of items per paragraph
increases.

Another approach to estimating C;(#) is suggested by the work of Gibbons,’ Bock,
and Hedeker (1989). With the help of a computational device called the modified Clark
algorithm, they are able to factor-analyze binary items, assumed to have normal ogive
response curves, with correlated specific factors. C;(f) can then be estimated from the
common factor loadings and specific factor correlations. at least when their one-factor

solution leads to the same Jatent trait as identified in the definition of dp = 1.
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6. Application to the Dichotomous Case

In the binary (dichotomous) case, in which X, takes the value 0 or 1 depending on
the examinee’s answer o the j'» item, the d; = 1 likelihood is
J
PIX;=z,]0=6=]] Pi(e)* 1~ P(o)~". (19)
j=1
with monotone item characteristic curves (ICC’s) P,(6) = P[X; = 1|0 = 6|. Let us
assume onlv that El and LAD hold with respect to ©. The definitions and theorems
presented in Section 3 all spscialize to the dichotomous setting, and in fact, most were
introduced in this setting by Stout (1990). The MLE must solve the likelihood equation,
J
0=€,(8,) = 2 X(8)1X; - P;(6,)), (20)
j=1
where A; (6) = log P;(€)/{1— P,;(#)) (the use of the log-odds-ratios A, is equivalent to using
the log-category-probabilities Ao and Aj; from Section 4, and avoids summation over the
n = 2 response rategories). As before, boundedness of /\;(0) together with EI guarantees
that %[’1(9) converges 1o zero, given © = §. More precisely, we will assume that. for all 6.

there exists an interval By containing # and a constant My < oo, such that
A/ ()] < Mg V1€ Bg, Y j. (21)

To complete a proof of consistency, we again need to bound the test information function

as

J
10 = > X XOF® 2 e >0, (22)

j=1
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as J — oo, and as in Proposition 4.1, LAD is a sufficient but not necessary condition
to achjeve this. Note that the information function in (22) is precisely the same one
introduced in (5) for n = 2 response categories.

Theorem 6.1. Let X be a dichotomous item sequence satisfying EI, (21), and (22). Then

there exists a sequence {01 :J 2 Jo} of roots of (20) such that
im P[|6,-6]<e|©®=6=1,
J—oco

for every ¢ > 0.
Theorem 6.2. Suppose the assumptions of Theorem 6.1 hold, and let 63] be any sequence

of consistent estimates of §, given @ = 6. Then, the Newton’s method improvement,

. €8
8} = 81 _ '_j(-J)’
£5(0,)

is also consistent for 6.
An obvious candidate for the initial guess in Theorem 6.2 is §; = }5_," (X;). From
(20) and the above results, we see again that the consistency and asyvmptotic distribution

of éj is tied up with the behavior of the centered weighted averages
1, - i
7(’_,(8) = .4_] - AJ(@)

J
D a,lX; - P(6), (23)
j=1

S

with q; = /\;(8), where again the dependence of a; on § does not matter since § is fixed.

Once again, let

03(8) = Var(A, |6)
=1

J J
1 2
= F Z aipj(e)u - PJ(G)] + F z Z a,-a,-Cov(X;,Xj ‘@ = @),

=1 i=1 J=1
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and let C;(8) = (2/7) Xy T2} M(6)X;(6)Cov(X;, X,16).

Theorem 6.5. Suppose that the assumptions of Theorem 6.1 hold for the item sequence X

and the latent trait ©. Also suppose, given © = 6, that in (23),

= T) Ay — AJ(G)] ~ AN(0,1). (24)

Finally, suppose R(J) is a function for which R*(J)C,(8)/J remains bounded. Then,

R (J) 1(8) + cj(o)).

R(J)(6, — 8) ~ AN (o, 5 AT

Moreover, if ; is any estimator for which R(J)(8; — 0) is bounded in probability, 85 from
Theorem 6.2 is also asymptotically normal with the same asymptotic variance.

Once (24) is deemed qualitatively acceptable, the asymptotic bebavior of 8, is deter-
mined by C;(8). When C,(6) is near zero, we can expect the items to behave as though
L1 were true; when C;(8) is much larger, we should expect item behavior that can be

eflectively analyzed only with a multidimensional model.

7. Discussion
In assessing tlie shortcomings of the traditional local independence approach to item
response modeling, Drasgow and Parsons (1983, p. 198) conclude, “it seems clear that
researchers should be more concerned with the robustness of estimation techniques to
minor violations of dimensionality assumptions than with the possibly neverending task
of measuring all latent variables that underlie responses in a particular content domain.”
This call for the study of structural robustness in IRT is compelling: Although violations of
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strictly unidimensional latent structure can sometimes be explicitly modeled and exploited,
many situations call for a unidimensional approach that is tolerant of minor violations of

strict unidimensionality.

In this paper we bave extended Stout’s modeling notion of essential independence, EI,
for binary items (Stout, 1987; 1990) to polytomous item sequences. Essential independence
permits some dependence among items such as would be caused by minor violations of
local independence, LI, due to nuisance trait multidimensionality, but still allows a single
dominant latent trait to be identified. This type of mild interitem local dependence is
arguably more realistic than unidimensional local independence models, d; = 1, for many

currently-used ability and achievement tests.

For items in which the expected amount of credit awarded increases with the latent
trait, we have developed a theory of ability estimation under EI that closely parallels Stout
(1990). As in Stout's dichotomous response theory, monotonicity need not be assumed
for the individual items, but rather only for the test characteristic curve. Under this
aggregate monotonicity condition, called local asymptotic discrimination. LAD, we have
shown that the transformration fi;’ (A;) of the raw test score is a consistent estimator of
each examinee’s 6 as the test length J grows. A definition of essential unidimensionality,

dg = 1, was proposed based on El and LAD holding with respect to a unidiraensional trait

o.

An alternative to scoring the items using an ad hoc scoring scheme {a;m} (which leads
to the test scores A; above) is to ignore the local dependence among the items and employ
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a well-known LI-based estimation procedure. Since it is common to use an LI model even
when LI is believed to be only approximately true, the behavior of such a procedure in the
more realistic EI setting is an important issue, as Drasgow and Parsons attest to above.

Maximum likelihood estimation of € was examined in this light.

The MLE 6; based on a unidimensional LI model was shown to be consistent for each
examinee's 6§ as the test length J grows, when only EI and not LI holds. In this sense
8, is robust as an estimator of # under this realistic structural violation of LI. When an
estimator such as 8, is found to be consistent, its precision as an estimator is usually
judged by the theoretical asymptotic distribution of J1/2(8; — 6). Under LI, we expect this
to be asymptotically normal with mean zero and variance 1/7;(6) as J — oo, where 1;(6)
is the test information function. When é; is based on an L] model but only EI holds,
this asymptotic distribution may fail in various ways: the rate J*/? may be preserved
but the variance may be inflated by an essentially constant amount; the rate J*/2 may
fail; and finally, it is conceivable that asymptotic normality itself fails. with any rate of
convergence. Hence. the robustness of consistency for the MLE does not extend to a

robustness of asymptotic distribution, under EI violations of LI.

Conditions for asymptotic normality of §; involve higher product-moment assump-
tions that do not admit easy rigorous checks from the data. Hence, asymptotic normality
itself is usually a qualitative issue that must be decided by the practitioner in each ap-
plication. If asymptotic normality is qualitatively acceptable, the correct variance can be
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calculated with the help of the expression

g o it

C1(8) = = 2.3 Cov(Ai 4; |0),
i=1 jm1

where the A,’s score each response category according to the derivative of the log-category-
probability: A, = )::;‘o Nim(8)Yjm. In principle, +"5(8) could be positive or negative;
however, in many educational testing settings, we expect it to be positive. Under EI,
C;(8)/J — 0, but C,(8) itself need not tend to zero.

For fixed J, the quantity C;(6) should be viewed as an index of local item dependence
along a continuum that connects strictly d; = 1 unidimensional models with strictly
dg > 1 multidimensional models. Such a continuum has also been suggested by Drasgow
and Parsons (1983). The dg = 1 unidimensional models, which are the focus of this paper,
form the middle of this continuum. The nearer C(#) to zero, the more we can expect
latent trait estimation to behave as though LI were true. The larger C,(#), the more
we should expect item behavior that can be effectively analyzed only with an explicitly
multidimensional latent trait model. Thus, if C;(8) could be effectively estimated in
practice, we would be able to use it to predict the benavior of é_;. Various ideas for doing
this are provided by Wainer and Wright (1980), Gibbons, Bock, and Hedeker (1989), and
Nandakumar and Stout (1989). For this reason, the non-robustness of distribution of 6,
need not be defeating.

The principal assumptions needed to establish consistency of the LI-based MLE were
EI and that the information function J;(8) (calculated as though LI were true) be bounded

away from 0 and oc. Indeed, a hierarchy of identifiability conditions for estimating 6 can be

38



developed, starting with cumulative RCC monotonicity M (i.e., ordered-response items),
moving through test characteristic curve monotonicity LAD, to the bounding of 7,(§) away
from 0. Each of these conditions in some sense implies the next, and all allow various forms
of unidimensional latent trait estimation. This hierarchy illustrates the transition from
highly interpretable but very restrictive conditions, such as M, to less restrictive conditions
that do not admit easy psychometric interpretation, such as the bounding conditions on
T5(8).

Essential independence plays a central role in the convergence of 6; to # because it
guarantees the stability of certain weighted averages of item scoris that appear in the
LI-based log-likelihood. Therefore, we might expect that under EI and suitable regularity
conditions, other estimators that depend on the stability of the LI-based log-likelibood
would also be consistent estimators of §. Indeed, a trivial modification of the proof of

Theorem 4.1 shows that the posterior mode, which maximizes the posterior density

P[X; =z |8)/(6)

v

f181X5) =

is consistent for # under the conditions of that theorem and a mild nondegeneracy con-
dition on the density f(#) of © in the examinee population. The posterior mode has
been considered by Samejima (1969) and by Lord (1986), for example. A different set of
regularity conditions from those employed in Theorem 4.1, which are equally plausible in

applications, can be used to obtain consistency of the posterior mean,

E[0 |X,] = _/9!1(9 | X)de.
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Essential independence is used here to ignore the part of the integral away from the value
6o that generated the data X see, for example, the proof of equation (5) in Walker (1969).
The regularity conditions needed generalize Walker's conditions, and incidentally provide
another proof of consistency of the MLE. The posterior mean has been considered by, for

example, Bock and Mislevy (1982) as well as earlier vy Szmejima (1969).

Essential independence is thus seen to be a minimal condition under which strictly
dr = 1 trait estimation procedures may be expected to work when applied to mildly mul-
tidimensional data. Qur examination of essential independence in the polytomous item
response setting shows that this condition is not an artifact of the simple structure of
dichotomously-scored tests, but a general condition that can be fruitfully applied to stan-
dardized tests of 21i sorts. Moreover, we have shown that a rigorous approach to the struc-
tural robustness analysis advocated by Drasgow and Parsons (1983) is possible. Locally
independent latent trait models can, and should, continue to be used to develop estimation
and decision procedures in IRT, if for no other reason than their analytic simplicity. How-
ever, before LI-based procedures are applied on-line, they should be thoroughly examined

under the more realistic assumption of essential independence.
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